In Silico Comparison of the Hemicelluloses Xyloglucan and Glucuronoarabinoxylan in Protecting Cellulose from Degradation

نویسندگان

  • Indrakumar Vetharaniam
  • Martin Upsdell
  • William J. Kelly
  • Graeme T. Attwood
  • Christina D. Moon
  • Philip J. Harris
چکیده

We used a previously developed simulation model of a plant cell wall and its enzymatic degradation to compare the abilities of two hemicelluloses, glucuronoarabinoxylan (GAX) and xyloglucan (XG), to protect cellulose microfibrils (CMFs) from attack by cellulose-degrading enzymes. Additionally, we investigated the effect of XG abundance on the degradation rate of CMFs in the presence of the same enzymes. Simulations were run using hypothetical cell-wall compositions in which the numbers and arrangement of CMFs and (1,3;1,4)-β-glucan were kept constant, but the proportions of GAX and XG were altered. Scenarios considered walls with low and equal proportions of either GAX or XG, and also low, medium and high proportions of XG in the absence of GAX. The rate of CMF degradation was much lower in walls with GAX than walls with XG, except for early in the simulation when the reverse held, suggesting that XGs were protecting CMFs by competitive inhibition. Increasing XG content reduced both the degradation rate of CMFs and the percent of XG degraded, indicating that activity of enzymes decreased with XG density despite XG being degradable. Glucose oligosaccharide breakdown products were analysed on the basis of the originating polysaccharide and their OPEN ACCESS Computation 2015, 3 337 degree of polymerisation (DP). The presence of GAX as opposed to equal amounts of XG had some significant effects on the amount and profile of breakdown products from XG and CMFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves.

The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the two hemicelluloses xyloglucan and glucuronoarabinoxylan, and structural glycoproteins. The cell wa...

متن کامل

Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the...

متن کامل

Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.

Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, su...

متن کامل

Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation.

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity of well-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been...

متن کامل

Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D.

The structure and enzymic activity of xyloglucanase Xgh74A and endoxylanase Xyn10D, components in the cellulosomes of cellulose-grown Clostridium thermocellum, were determined. Xyn10D is a thermostable endo-1,4-beta-xylanase with a module composition identical to Xyn10C (CBM22-GH10-Doc). It hydrolyses xylan and mixed-linkage 1,3-1,4-beta-glucan with a temperature optimum of 80 degrees C. Xylogl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computation

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015